Physiological Basis of Myocardial Perfusion
SPECT and PET

Jamshid Maddahi, MD, FACC, FASNC
Professor of Molecular and Medical Pharmacology
(Nuclear Medicine) and Medicine (Cardiology)
David Geffen School of Medicine at UCLA

Director, Biomedical Imaging Institute

Relation of Degree of Stenosis to Coronary Blood Flow

Flow = pressure/resistance

Factors Determining Regional Myocardial Uptake of Radioactivity

Regional myocardial blood flow
X
Extraction fraction
Relationship Between Tracer Uptake and Myocardial Blood Flow

Myocardial Tracer Uptake

Myocardial Blood Flow (ml/min/g)

Teboroxime
TI-201
Tc-99m Sestamibi
Tc-99m Tetrofosmin

Defect intensity = 2.3/2.9 = 0.79
(21% below normal)
Relationship Between Tracer Uptake and Myocardial Blood Flow

Defect intensity = $\frac{1.5}{1.7} = 0.88$
(12% below normal)

![Graph showing the relationship between myocardial tracer uptake and blood flow.](image)

Protocol for Tc-99m Labeled Perfusion Imaging
Same Day Rest-Stress

![Protocol diagram showing the procedure and time intervals.](image)

Total time: 5 hrs
Protocol for Tc-99m Labeled Perfusion Imaging
Same Day Rest-Stress

- Tc-99m
- 6.3 mCi

Rest image
Stress
Stress image

0 45 60
1/2 hr
minutes
Total time: 2.5 hrs

Protocol for Tc-99m Labeled Perfusion Imaging
Same Day Stress-Rest

- Tc-99m
- 6.3 mCi

Stress
Stress image
Rest image

30 45 60
1/2 hr
minutes
Total time: 2.5 hrs
Methods to Diagnose/Reduce/Eliminate Soft Tissue Attenuation

- Gated acquisition to assess regional wall motion
- Prone imaging
- Upright imaging
- Attenuation correction

Identification of Attenuation artifact by Gated Imaging to Assess Regional Wall Motion

<table>
<thead>
<tr>
<th></th>
<th>Nonreversible defect</th>
<th>Reversible defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal wall motion</td>
<td>Artifact</td>
<td></td>
</tr>
<tr>
<td>Hypo/akinetic</td>
<td>Scar</td>
<td></td>
</tr>
</tbody>
</table>
Identification of Attenuation artifact by Gated Imaging to Assess Regional Wall Motion

<table>
<thead>
<tr>
<th></th>
<th>Nonreversible defect</th>
<th>Reversible defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal wall motion</td>
<td>Artifact</td>
<td></td>
</tr>
<tr>
<td>Hypo/akinet</td>
<td>Scar</td>
<td>Ischemia</td>
</tr>
</tbody>
</table>

Identification of Attenuation artifact by Gated Imaging to Assess Regional Wall Motion

<table>
<thead>
<tr>
<th></th>
<th>Nonreversible defect</th>
<th>Reversible defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal wall motion</td>
<td>Artifact</td>
<td>Shifting artifact or ischemia</td>
</tr>
<tr>
<td>Hypo/akinet</td>
<td>Scar</td>
<td>Ischemia</td>
</tr>
</tbody>
</table>
Methods to Diagnose/Reduce/Eliminate Soft Tissue Attenuation

- Gated acquisition to assess regional wall motion
- Prone imaging
- Upright imaging
- Attenuation correction
Semi-recumbent imaging

Stress
Rest
Stress
Rest
Stress
Rest
Stress
Rest

Upright imaging

Stress
Rest
Stress
Rest
Stress
Rest
Stress
Rest
SPECT Based Transmission Imaging

- Scanning Line Source
 - Gd-153
- Scanning Point Source
 - Ba-133
- Line Source/Fan Beam
- Line Source Array

J. Cullom, Ph.D., MAHI
SPECT-CT Imaging (No Attenuation Correction)

SPECT-CT Imaging (After Attenuation Correction)
X-ACT Attenuation Correction System

Fluorescence X-rays

Fanbeam collimators

Solid-State Detectors Operating In High Counting Rate Mode (>5 x 10^6 cps per 20 cm x 15 cm detector area)

X-Ray Line Source Generator

* Maddahi J, et al. ICNC 2009*
P015 after AC

P026 no AC
Multi-Center Validation of AC for Upright SPECT MPI

Confidence of interpretation

Maddahi et al, JNC Submitted
Multi-Center Validation of AC for Upright SPECT MPI

Overall Detection of CAD

Maddahi et al, JNC Submitted

Multi-Center Validation of AC for Upright SPECT MPI

LAD

LCX

RCA

Maddahi et al, JNC Submitted
Possibility of Short Protocol with Same-Day Stress-Rest Imaging

<table>
<thead>
<tr>
<th>Stress</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definite normal</td>
<td>No</td>
</tr>
<tr>
<td>Possible defect</td>
<td>Yes</td>
</tr>
<tr>
<td>Definite defect</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Possibility of Short Protocol with Same-Day Stress-Rest Imaging

<table>
<thead>
<tr>
<th>Stress</th>
<th>Stress + AC</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definite normal</td>
<td>Normal</td>
<td>No</td>
</tr>
<tr>
<td>Possible defect</td>
<td>Defect</td>
<td>Yes</td>
</tr>
<tr>
<td>Definite defect</td>
<td>Normal</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Defect</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Stress

Stress-Rest AC
Rest-Stress Protocols

Rapid Imaging
Benefits of Rapid SPECT Imaging

- Patient convenience
- Decreased patient motion and associated artifact
- Increased patient throughput
- Decrease radiation dose to patients
- Potential for dynamic imaging and absolute quantitation of myocardial blood flow

2-Minute Gated Acquisition with D-SPECT
nSPEED Rest-Stress Upright Imaging (5.3 and 2.9 min, Dual Head)

Blinded Visual Assessment of Image Quality

\(n\text{SPEED vs. Standard (}\text{n=448}\)\)

- nSPEED = Standard
- nSPEED better than Standard
- nSPEED worse than Standard

<table>
<thead>
<tr>
<th>Stress Images</th>
<th>Rest Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>79.5%</td>
<td>78.6%</td>
</tr>
<tr>
<td>19.2%</td>
<td>19.4%</td>
</tr>
<tr>
<td>1.3%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Maddahi et al, JNC 2009; 16(3): 351-7
Measurement of LVEF (%) from Gated Stress SPECT
nSPEED vs. Standard

\[y = 1.005x \]

\[R^2 = 0.957 \]

Maddahi et al, JNC 2009; 16(3): 351-7

Dedicated PET

- Germanium rod sources for AC
- Minimal radiation exposure
- Relatively inexpensive

Hybrid PET/CT

- CT used for transmission map
- More radiation
- Expensive (but anatomic data & CTA)

Adapted from E Garcia, Emory Univ
PET Myocardial Perfusion Tracers

<table>
<thead>
<tr>
<th>Tracer</th>
<th>Ext. Fraction</th>
<th>T1/2</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-15 Water</td>
<td>100%</td>
<td>2.09 min</td>
<td>Cyclotron</td>
</tr>
<tr>
<td>N-13 Ammonia</td>
<td>85%</td>
<td>9.96 min</td>
<td>Cyclotron</td>
</tr>
<tr>
<td>Rubidium-82</td>
<td>65%</td>
<td>76 sec</td>
<td>Generator</td>
</tr>
</tbody>
</table>

Advantages of PET vs. SPECT

- Fast protocols
- Improved image quality in obese patients
- Improved specificity (less attenuation artifacts)
- Improved sensitivity for detection of CAD
 - Better tracers with higher extraction fraction
 - Higher system resolution
 - Imaging at peak stress
PET Perfusion Imaging Protocol
N-13 Ammonia

N-13 ammonia
30 mCi

Rest Perfusion

Adenosine
Stress Perfusion

0 5 20 30 36 41 56
minutes
Total time: <1 hr

Rapid PET Rb-82 ECG-Gated Rest/Peak Stress Acquisition Protocol

Rb-82
40 mCi

10 s

Emission Scan, (150 secs), 3D with gating, starting 2.5 mins after Rb-82

Tx Scan

Emission Scan, (150 secs), 3D with gating, starting 2.5 mins after Rb-82

Total time: <20 mins

Bateman t, Mid America Heart Institute
Left Ventricular Ejection Fraction Reserve Improves Identification of Multivessel CAD

MPI Alone

- 1-vessel CAD: 72%
- 2-vessel CAD: 56%
- Left main/3-vessel CAD: 43%

MPI + EF Reserve

- 1-vessel CAD: 67%
- 2-vessel CAD: 33%
- Left main/3-vessel CAD: 21%

BMS747158 (Flurpiridaz): Chemical Structure

(characteristic image)

2-tert-Butyl-4-chloro-5-[4-(2-(18F)fluoro-ethoxymethyl)-benzyloxy]-2H-pyridazin-3-one

Characteristics of the Ideal PET Perfusion Tracer

- **F-18 label**
 - Available as unit dose from a regional cyclotron
 - Ideal PET resolution (positron range)
 - Possibility of rest-exercise imaging

- **High extraction fraction**
 - Better perfusion defect detection
 - Reliable absolute quantitation
Sequential Whole Body Images of 18F flurpiridaz

Conclusions of Phase 1 Flurpiridaz F 18 Study

- No tracer related adverse events were noted.
- Dosimetry was within the clinically acceptable range, using up to 14 mCi combined rest-stress dose.
- Stress imaging was feasible with both treadmill exercise and pharmacologic vasodilation.
- Myocardium was clearly visualized for several hours after rest and stress injection with good myocardial to background ratio.
- Five minute gated acquisition - starting 2 minutes after injection - yielded high quality images.

Objectives

• To assess clinical safety

• To compare flurpiridaz F 18 PET and Tc-99m labeled SPECT MPI with respect to:
 – Image quality
 – Certainty of interpretation
 – Detection of CAD

Study Population (N = 143)

• 21 US centers
• 107 males and 36 females
• Age range: 29-88 yrs (mean = 62.4 yrs)
• 108 White, 3 Asian, 16 African American, 16 Others
• Height (cm): 134-191 (mean = 171.1)
• Weight (kg): 49-132 (mean = 82.9)
• BMI: 17.4 – 41.9 (mean = 28.3)

BMS747158-201
Flurpiridaz F 18 Injection Phase 2 Study

Image Quality (N=86)
(% rated excellent or good)

<table>
<thead>
<tr>
<th></th>
<th>PET</th>
<th>SPECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest</td>
<td>95.3</td>
<td>69.8</td>
</tr>
<tr>
<td>Stress</td>
<td>98.8</td>
<td>84.9</td>
</tr>
</tbody>
</table>

P<0.01

BMS747158-201
Flurpiridaz F 18 Injection Phase 2 Study

Certainty of Interpretation (N=86)
(% definitely normal or abnormal)

<table>
<thead>
<tr>
<th></th>
<th>PET</th>
<th>SPECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall CAD Diagnosis</td>
<td>90.7</td>
<td>75.6</td>
</tr>
</tbody>
</table>

P<0.01

In this Phase 2 clinical trial, flurpiridaz F 18 injection:

- Had a favorable safety profile and was well tolerated.
- Was an improvement compared to Tc-99m SPECT MPI with respect to:
 - Rest and stress image quality
 - Certainty of image interpretation
 - Sensitivity for detection of CAD

Quantitation of Myocardial Blood Flow

- **Absolute** = ml/min/g
- **Flow Reserve** = Peak hyperemic/resting flow
- **Relative** = Normalized to best perfused region
Advantages of PET vs. SPECT

Absolute Quantitation of Blood Flow

- Better identification of MVD
- Assessment of microvascular disease
- Evaluation of endothelial dysfunction and response to Rx
Absolute Quantitation of Myocardial Blood Flow with 18F Flurpiridaz PET

Maddahi J, Huang SC, et al, ASNC 2011 * p<0.002 vs. Normal