Assessing Ventricular Function with SPECT and PET

Serge D. Van Kriekinge, PhD
Artificial Intelligence in Medicine (AIM) Program
Department of Medicine, Cedars-Sinai Medical Center
David Geffen School of Medicine, UCLA

Disclosure: Software royalties from Cedars-Sinai Medical Center

SPECT & PET Quantitative Function Analysis

- Software availability – Main algorithms
 - **Cedars-Sinai**
 QGS / AutoQUANT / QBS
 www.csaim.com
 - **Emory University / Syntermed**
 Emory Cardiac Toolbox
 www.syntermed.com
 - **University of Michigan / Invia**
 Corridor4DM
 www.inviasolutions.com

- All provide: systolic function, diastolic function, wall motion, wall thickening, phase analysis (dyssynchrony)
- See http://csaim.com/validation
QUANTITATIVE FUNCTION BASICS: SEGMENTATION AND SYSTOLIC FUNCTION

3D LV Surfaces

- Mid-myocardial surface computed using constrained maximal counts
- Epi- and endocardial surfaces derived from mid-myocardial surface
 - Using count variations throughout the cardiac cycle
 - Constrained by constant myocardial mass
- Surfaces are ellipsoidal, “clipped” by a valve plane
Assessing Ventricular Function with SPECT and PET

3D LV Surfaces

Emory Cardiac Toolbox

Michigan Corridor 4DM

3D LV Volumes & Ejection Fraction

- Cavity volumes are calculated using the endocardial surface at each interval
- EDV = max volume; ESV = min volume
- \(EF \% = 100 \times \frac{(EDV - ESV)}{EDV} \)
- 3D geometric approach: no background counts subtraction, Simpson’s Rule, etc…

EF=75%

EF=27%
3D LV Volumes & Ejection Fraction

8- or 16-frame gating?

- **8-frame** gating causes **LVEF underestimation** by ~ 4% when compared to 16-frame gating
 [Germano, JNM 1995; 36:2138-2147]

- Any other reasons?
 - Diastolic Function: 16
 - Phase Analysis: 8 or 16

- We use 16-frame gating

PET vs. SPECT

- QGS was initially developed and calibrated for SPECT images and noise characteristics
- **QGS-PET** uses a modified algorithm that takes advantage of increased resolution as well as visibility of the basal portion of myocardium, yielding a slightly higher LVEF
- One should not use a SPECT algorithm to process PET data!
Assessing Ventricular Function with SPECT and PET

PET vs. SPECT

- SPECT: LV function assessed at rest and post stress
- PET: LV function assessed at rest and peak stress

- Patients with 3-vessel CAD or left main CAD may be identified by LVEF decrease and/or wall motion abnormalities during peak stress even in the absence of apparent perfusion abnormalities.

[Di Carli, JNM 2007; 48(5):783-793]

DIASTOLIC HEART FAILURE & DIASTOLIC FUNCTION ASSESSMENT
Assessing Ventricular Function with SPECT and PET

Diastolic Function: Parameters

* rates normalized to EDV

- Time-volume curves are interpolated
- Compute first derivative
- Extract parameters of interest: PER, PFR, TTPF, MFR/3

[Nakajima, JNM 2001; 42:183-188]

Diastolic Function: QGS

- Time-volume curves are interpolated
- Compute first derivative
- Extract parameters of interest: PER, PFR, TTPF, MFR/3

90 normal patients

Mean values
- PFR: 2.62 ± 0.46 EDV/s
- TTPF: 164.6 ± 21.7 ms

Abnormality thresholds
- PFR: < 1.70 EDV/s
- TTPF: > 208 ms

[Akincioglu, JNM 2005; 46(7):1102-8]
Assessing Ventricular Function with SPECT and PET

REGIONAL FUNCTION: WALL MOTION AND WALL THICKENING

17-segment model

Motion

0 = normal
1 = mild hypokinesis
2 = moderate hypokinesis
3 = severe hypokinesis
4 = akinesis
5 = dyskinesis

Thickening

0 = normal
1 = equivocal reduction
2 = definite reduction
3 = no thickening

Myocardial Function Scoring
Assessing Ventricular Function with SPECT and PET

“Normal” Myocardial Wall Motion Pattern

The septum moves less than the lateral wall in most normal patients [Sharir, JNM 2001; 42(11):1630-8]

“Normal” Myocardial Wall Thickening Pattern

The apex thickens more than the base in most normal patients [Sharir, JNM 2001; 42(11):1630-8]
Automatically-Derived Motion / Thickening Scores

DYSSYNCHRONY ASSESSMENT: PHASE ANALYSIS
What is LV Dyssynchrony?

- Normal LV contraction occurs synchronously
- Dyssynchrony occurs when parts of the LV contract at different times from others, i.e., “out of phase”
- This type of dyssynchrony is “mechanical dyssynchrony”
- Dyssynchrony within the LV: intra-ventricular
- Contraction delay between LV and RV: inter-ventricular
- Patients with LV dyssynchrony may be most responsive to cardiac resynchronization therapy (CRT)

What Does “Phase” Mean?

- A shift or delay with respect to a reference signal of the same frequency
- Expressed as an angle or time
- In our case, one cardiac cycle = 360° (= 1 sec @ 60bpm)
Phase Analysis in Nuclear Cardiology

- Goal: global and regional dyssynchrony analysis
- Fourier analysis: technique used to extract a phase angle (proxy for the “onset of contraction”) for each LV surface sampling point

- Myocardial perfusion SPECT/PET: based on timing of local thickening (derived from count variations during cardiac cycle)
- Also possible from gated blood pool SPECT using count variations near the endocardium—motion based, not thickening!

Phase Analysis: Parameters

- Using the phase angle at each surface sampling point we build global and regional histograms
- From the phase histograms we compute:
 - Standard deviation σ (traditional, degrees)
 - Bandwidth β: smallest angle range that includes 95% of histogram measurements (degrees)
 - Entropy ε: measure of variability rather than dispersion (%)
 - Mean (regional)
Assessment of Dyssynchrony

Conduction abnormalities
- **Low likelihood** patient: low dyssynchrony
- **LBBB** patient: conduction delay → mechanical contraction delay → **higher** dyssynchrony
- Discriminating parameters: histogram bandwidth, SD & entropy, regional (LAT-SEP) differences
- Ss/Sp 81/63% → 90/94%

LV dyssynchrony quantification of **normal** subjects (n=157), **LBBB** (n=33), **RBBB** (n=19), **RV paced** rhythms (n=23), and **LV dysfunction** (EF <40%, n=120).

[Van Kriekinge, JNM 2008; 49:1790-7]

Assessing Ventricular Function with SPECT and PET

Predicting Response to CRT: Emory

- CRT Response Prediction: who benefits?
 - **Low** dyssynchrony: non-responder
 - **High** dyssynchrony: responder
 - Predictive parameters: histogram bandwidth (Ss/Sp 70/70%), standard deviation (Ss/Sp 74/74%)

![Image A](image1.png) ![Image B](image2.png)

[Henneman, JNM 2007; 48(7):1104-11]

(A) Non-responder, (B) Responder

Predicting Response to CRT: QGS

- CRT Response Prediction: who benefits?
 - **Low** dyssynchrony: non-responder
 - **High** dyssynchrony: responder
 - Predictive parameters: histogram bandwidth (Ss/Sp 83/81%), standard deviation (Ss/Sp 83/81%)

![Image A](image3.png) ![Image B](image4.png)

How do we improve CRT?

- Global dyssynchrony may predict whether a patient is likely to respond
- Combining regional dyssynchrony and myocardial scar location (non-reversible defect) may help guide lead placement
- Using dyssynchrony-guided CRT, reverse LV remodeling and increase in LVEF are observed, with improved long-term prognosis

- Echo: Ypenburg, JACC 2008; 52(17):1402-9
- Nuclear: Friehling, Circulation: Cardiovascular Imaging 2011; 4:532-9
- Case for using dyssynchrony: Delgado, Circulation; 2011; 123: 640-655

Phase Analysis: Caveat

- Uncorrected gating errors affect phase measurements
- Dyssynchrony is artifactually decreased by gating errors
- These can be corrected post-hoc by normalizing the affected frames

[Ludwig, JNM 2012; 53(12):1892-6]
Thank you!

Please visit the Cedars-Sinai AIM Program web site

http://csaim.com

for additional resources including validation information and publications (many full-text papers available)