Automatic Quantitation of Regional Myocardial Wall Motion and Thickening From Gated Technetium-99m Sestamibi Myocardial Perfusion Single-Photon Emission Computed Tomography

GUIDO GERMANO, PhD, † JACOB ERELI, MD, ‡ HOWARD LEWIN, MD, †
PAUL B. KAVANAGH, MS, † DANIEL S. BERMAN, MD, FACC †

Los Angeles, California

Objectives. We developed an automatic quantitative algorithm for the measurement of regional myocardial wall motion and wall thickening from three-dimensional gated technetium-99m sestamibi myocardial perfusion single-photon emission computed tomographic images.

Background. The algorithm measures the motion of the three-dimensional endocardial surface using a modification of the centerline method, as well as wall thickening using both geometry (gaussian fit) and partial volume (counts).

Methods. The algorithm was tested using a “variable thickness” heart phantom, and the quantitative results were compared with visual segmental assessment of myocardial motion and thickening in 79 clinical patients with a wide range of ejection fractions (6% to 87%).

Results. Phantom measurements of simulated motion and thickening were accurate regardless of the camera used (dual or triple detector), the angular span of reconstructed data (180° or 360°), the amount of motion (3 or 6 mm) or the amount of thickening (33%, 50% or 100%). Quantitative measurements of segmental motion and thickening in the patients were correlated with visual scores (r = 0.668, exact agreement 72.6%, kappa 0.433 and r = 0.550, exact agreement 74.7%, kappa 0.408, respectively). Significant inverse linear relations exist between the global (summed) visual motion score and the average quantitative motion, and between the global (summed) visual thickening score and the average quantitative thickening. Automatic quantitative ejection fraction measurements correlated extremely well with average quantitative motion (r = 0.929) and thickening (r = 0.959).

Conclusions. Our algorithm is accurate and may be the first automatic technique for the quantitative three-dimensional assessment of regional ventricular function in cardiology.

Methods. We previously described the algorithms that automatically determine three-dimensional endocardial and epicardial surfaces from gated (8) and ungated (9) SPECT image data sets. In brief, for each interval of a gated SPECT

From the †Divisions of Medical Physics and Imaging and Cardiology, Department of Medicine and Division of Nuclear Medicine, Department of Imaging, Cedars-Sinai Research Institute, Cedars-Sinai Medical Center; and ‡Department of Radiological Sciences and Department of Medicine, University of California Los Angeles School of Medicine, Los Angeles, California. This work was supported in part by a Biomedical Engineering Research Grant from the Whitaker Foundation, Rosslyn, Virginia.

Address for correspondence: Dr. Guido Germano, Division of Nuclear Medicine, Cedars-Sinai Medical Center, A047 North Tower LL, 8700 Beverly Boulevard, Los Angeles, California 90048. E-mail: germano@csmc.edu.
study, a maximal count midmyocardial surface (MMS) is determined; then rays are subtended normally to it, and a count profile is extracted for each ray. An asymmetric gaussian is fitted to each profile, and the endocardial and epicardial points along that ray are taken to be located at a distance from the MMS equal to a given percentage of the inner and outer SDs of the gaussian, respectively. The SDs measured from count profiles with peaks falling below 50% of the maximal myocardial count in that interval are labeled as invalid and replaced with SDs that minimize the sum of the absolute differences between each invalid SD and the SD of each of its four spatially closest neighbors. In essence, contours are generated even in the apparent absence of perfusion by maximizing the smoothness of the surface patch defined by the invalid points, as demonstrated in patients with coronary artery disease (28). The myocardial volume of the first gating interval (bound by the epicardial and endocardial surfaces as well as by the valve plane) is computed, and the myocardial volume of each subsequent interval is set equal to that of the first by adding appropriately scaled inner and outer corrective surfaces to the epicardial and endocardial surfaces determined for that specific later interval. The length $L_{0}[t, i]$ contributed, along profile i, to the unscaled corrective surfaces for interval t depends on the MMS pixel count along profile i in the first interval (generally representative of end-diastole) and the tth interval, as well as on the highest MMS pixel count over the entire myocardium in the first interval. In particular, a first corrective ratio δ is computed as the MMS pixel count along ray i in interval t divided by the MMS pixel count along the same ray in interval 1, this ratio being limited to a range between 0.5 and 2.0. Then, a weighting ratio α is calculated from the first interval data as the MMS pixel count along ray i divided by the highest MMS pixel count in the myocardium. The two variables α and δ are combined as shown in the following equations:

$$L_{0}[t, i] = (1 - \alpha) + \alpha \delta,$$

where

$$\alpha = \frac{\text{MMS}[1, i]}{\max(\text{MMS}[1, \text{all}])},$$

$$\delta = \frac{\text{MMS}[t, i]}{\text{MMS}[t, i]},$$

and δ is set to 0.5 and 2.0 if the ratio in equation 3 is <0.5 or >2.0, respectively. The length $L[t, i]$ contributed, along profile i, to the scaled corrective surfaces for interval t is then

$$L[t, i] = L_{0}[t, i] \gamma(t),$$

where γ is the scaling factor necessary to make the myocardial volume of interval t equal to that of interval 1. On the basis of this determination of endocardial and epicardial surfaces, myocardial thickness, measured as the distance between those surfaces, takes into account both geometric and count (partial volume (11,12)) considerations, in gated files. Myocardial thickening is computed as the variation in thickness between end-diastole and end-systole and is expressed as the percent increase from diastolic thickness.

Regional motion is measured as the distance between a given point of the endocardial surface at end-diastole and end-systole. This distance is expressed in absolute terms (mm) and measured perpendicularly to the average MMS between end-diastole and end-systole—a modification of the “centerline” method (13), similar to that previously reported by Faber et al. (14). Left ventricular ejection fractions are derived from LV cavity volumes at end-diastole and end-systole, as derived in our previous study (8). The entire, totally automatic process starting with the gated short-axis data sets executes in ~20 s (~<2 min if automatic reconstruction and reorientation is included, similarly to (15)) on a SunSPARC5 computer with 32 megabytes of RAM and no dedicated or proprietary hardware. The software is modular, written in the C language and utilizes the X-Windows graphic user interface and the OSF-Motif toolkit, making it easily portable within the Unix environment. In previously published validation studies, high agreement was demonstrated between rest LVEFs measured automatically from gated Tc-99m sestamibi SPECT and semiautomatically from gated equilibrium blood pool ventriculography (10) and first-pass measurements (8).

Chest phantom. To evaluate the algorithms’ accuracy in measuring myocardial thickness, myocardial thickening and endocardial motion, a chest phantom was used (16). This lucite phantom consists of a 20×35-cm elliptical chamber containing two 10-mm diameter cylinders filled with silicon foam (to simulate the lungs) and a centrally located heart chamber. The heart chamber consists of an external 7.5-cm diameter cylinder containing three smaller cylinders with diameters of 5.0, 5.6 and 6.2 cm to simulate myocardial thicknesses of 0.6, 0.9 and 1.2 cm (Fig. 1). The LV cavity (internal portion of the three stacked and communicating cylinders) and the elliptical chest cavity were filled with water, whereas the “myocardium” (space between the external and three internal cylinders) was filled with water containing 6 mCi of Tc-99m. The phantom was imaged on a triple-detector camera (Prism 3000, Picker) using low energy, high resolution (LEHR) collimation, continuous detector rotation, 3° projections over 360$^\circ$ and 20 s of data collection per projection. The projection data were prefiltered with the standard two-dimensional Butterworth filter used in clinical practice for static Tc-99m sestamibi SPECT imaging (order 2.5, critical frequency 0.31 cycles/pixel, pixel size...
were acquired from randomly selected clinical patients taking two separate 4-1.2 cm slices as end-diastole and end-systole, respectively. Myocardial motion and thickening of 7 fi were simulated by ensuring that the myocardial area of a 1.2 and a 0.9 cm slice be 4-1.2 times that of a 1.2 cm slice, respectively. In our previous report was introduced by ensuring a constraint similar to that of "constant myocardial volume" reported in our previous report (8) was introduced by ensuring that the myocardial area of a 0.9- and a 1.2-cm slice be 1.273 and 1.826 times that of a 0.6-cm slice, respectively. Finally, myocardial motion and thickening of 0% were simulated by taking two separate 1.2-cm slices as end-diastole and end-systole.

Clinical testing. In this prospective study, gated images were acquired from 79 randomly selected clinical patients (55 men, age 65 ± 12 years, weight 164 ± 35 lb, 15 with a previous myocardial infarction) undergoing a rest thallium-201 (TI-201)/stress Tc-99m sestamibi "separate acquisition dual-isotope" gated SPECT protocol (17). In this protocol, injection of 3 to 3.5 mCi of TI-201 is followed by TI-201 SPECT imaging, which is then followed by injection of 25 to 30 mCi of Tc-99m sestamibi at peak stress and gated SPECT imaging 15 to 30 min later (treadmill exercise, n = 56) or 1 h later (pharmacologic stress using adenosine, n = 23).

All patient studies were acquired on a dual-detector camera (Vertex, ADAC) with the detectors oriented at 90°. The camera used LEHR collimation, step-and-shoot detector rotation, 64 projections over 180° (45° RAO to LPO) and 25 s of data collection per projection, distributed over eight cardiac frames. The acceptance window for cardiac cycle length was set to its maximal value of 100%, resulting in the acceptance of all counts from cardiac cycles with a duration within ±50% of the average, for each individual patient. The projection data sets were prefiltered with a two-dimensional Butterworth filter (order 5 and critical frequency 0.25 cycles/pixel, pixel size 0.64 cm) and reconstructed with filtered backprojection (ramp filter) and no attenuation correction. The resulting transaxial image sets were reoriented into short-axis sets, to which our automatic algorithm measuring myocardial wall motion and wall thickening was applied.

Semiquantitative visual assessment of regional (segmental) wall motion and wall thickening in the 79 gated Tc-99m sestamibi SPECT clinical studies was based on consensus of two experts (D.B., J.E.) who had no knowledge of the algorithm’s quantitative results, and included a total of 20 LV segments, including six evenly spaced segments in each of an apical, midventricular and basal short-axis slice and two apical segments in a midventricular vertical long-axis slice, as previously described (17). The myocardial slices chosen for analysis were automatically assigned by the quantitative software. The gated Tc-99m sestamibi SPECT images were read in cinematic mode, using a "smoothed" cinematic display routine that performs real-time 3-point temporal interpolation of the images (kernel 0.5, 1.0 and 0.5) to reduce noise. Wall motion was scored on a 6-point scale (0 = normal; 1 = mild hypokinesia; 2 = moderate hypokinesia; 3 = severe hypokinesia; 4 = akinesia; 5 = dyskinesia) in the 20 segments described earlier. Wall thickening was scored on a 5-point scale (0 = normal; 1 = mildly impaired; 2 = moderately impaired; 3 = severely impaired thickening; 4 = absent thickening) based on the visual assessment of myocardial wall brightening from diastole to systole (11) in the same 20 segments. Unlike standard clinical reading, in which motion and thickening estimates are correlated and combined with perfusion assessment to yield a coherent final interpretation serving a diagnostic or prognostic goal, in this study assessment of motion and thickening was conducted independently and with the primary goal of comparing it with the automatic software assessment. Thus, visual scoring of wall motion was based exclusively on endocardial motion and used a 256-tone gray scale. Visual scoring of wall thickening was based on the brightening of the entire myocardium, and used both the 256-tone gray scale and a 10-step
color scale. In the case of perceived absent radionuclide uptake in a segment, that segment was, by definition, defined to be akinetic.

Correlation between quantitative and visual segmental function was performed by first extracting motion and thickening circumferential profiles from the end-diastolic and end-systolic images of each patient, and combining such profiles in “raw” motion and thickening polar maps similar to those previously described for perfusion analysis (18,19). Then, both polar maps were divided into 20 sections corresponding to the same six basal, six midventricular, six apical short-axis and two apical long-axis segments used for visual assessment, and the average quantitative motion and thickening in each section were calculated (20). In addition to this segmental assessment, visual estimates of global myocardial motion and thickening were derived in each patient by summing the 20 individual motion and the 20 individual thickening scores, respectively. These global motion and thickening scores were each grouped in four categories corresponding to values of 0 to 3, 4 to 8, 9 to 13 and >13, as previously proposed (9,21), then compared with the average quantitative motion (mm) and the average quantitative thickening (percent diastolic thickness) measured by the automatic algorithm. Average quantitative motion and thickening were finally compared to global quantitative LV EF.

Statistical analysis. Continuous variables are expressed as mean value ± SD. Average quantitative motion and thickening measurements corresponding to categoric variables were compared using one-way analysis of variance with multiple comparison (Bonferroni) correction, with p < 0.05 representing statistical significance. The agreement between quantitative LV EF and average motion, as well as that between quantitative LV EF and average thickening, was assessed using linear regression analysis (Pearson correlation coefficient). Agreement tables were evaluated using the unweighted kappa statistics, with p < 0.05 considered statistically significant. Kappa values <0.4, between 0.4 and 0.75 and >0.75 were taken to represent poor, fair to good and excellent agreement, respectively, based on Fleiss’s classification (22).

Results

Phantom experiments. Figure 2 shows three short-axis (top row) and two long-axis images of the chest phantom, acquired using the triple-detector camera and reconstructed over 360°. The three short-axis slices shown (left to right: 6, 9 and 12 mm thick) are those used by the automated algorithm for measurements of thickness. Table 1 shows that initially measured myocardial thickness does not accurately reflect actual thickness, because the algorithm is designed to provide a linear but not a unitary slope relation between measured and actual thickness, even in the presence of a partial volume effect. Once

<table>
<thead>
<tr>
<th>Table 1. Quantitative Measurements of Wall Thickness, Simulated Wall Motion and Simulated Wall Thickening Using the Variable Thickness Heart Phantom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>6 mm</td>
</tr>
<tr>
<td>9 mm</td>
</tr>
<tr>
<td>12 mm</td>
</tr>
<tr>
<td>Thickening</td>
</tr>
<tr>
<td>1.00 (0%)</td>
</tr>
<tr>
<td>1.33 (33%)</td>
</tr>
<tr>
<td>1.50 (50%)</td>
</tr>
<tr>
<td>2.00 (100%)</td>
</tr>
<tr>
<td>Motion</td>
</tr>
<tr>
<td>0 mm</td>
</tr>
<tr>
<td>3 mm</td>
</tr>
<tr>
<td>6 mm</td>
</tr>
</tbody>
</table>

Data presented are mean value ± SD.
the initial estimate of thickness is corrected using the pseudo-constant myocardial volume constraint. Measurements of thickening are accurate regardless of the camera used (dual-or triple-detector), the angular span of reconstructed data (180° or 360°) or amount of simulated thickening (0%, 33%, 50% or 100%). Similarly, measurements or simulated endocardial wall motion based on the corrected thickness are consistent across all system configurations and only slightly lower than the actual 3-mm and 6-mm displacements. In all measurements, the SD of the 360° images is smaller than that of the corresponding 180° images, owing to the known better uniformity of the 360° reconstruction. The SD of the triple-detector 180° images is smaller than that of the corresponding dual-detector 180° images, owing to the larger pixel size of the latter images.

Clinical patients. The algorithm was executed successfully in all 79 clinical patients studied—success being defined as the generation of endocardial and epicardial contours that matched the contours visually apparent in the images. Figure 3 and Table 2 compare visual motion scores and quantitative absolute motion in the 1,580 individual myocardial segments of the 79 patients (1,125, 295, 82, 43 and 35 segments with visual motion scores of 0, 1 to 2, 3, 4 and 5, respectively). Agreement was good by regression analysis \(y = 7.03 - 2.06x; r = 0.668\), SEE 2.04. For each of the 79 patients studied, summed visual motion score and average quantitative motion. This global approach eliminates the possibility of error due to segmental misalignment between visual and automatic assessment. There were 21, 27, 8 and 23 patients with summed wall motion scores of 0 to 3, 4 to 8, 9 to 13 and >13, respectively. These categories were chosen based on our previous characterization of prognostically important degrees of myocardial hypoperfusion using a similar scoring system (21). The bar

Table 2. Agreement Table Relating Quantitative Motion and Visual Motion Scores in the 1,580 Segments Studied

<table>
<thead>
<tr>
<th>Quantitative Motion</th>
<th>Visual Motion Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>>5 mm</td>
<td>950</td>
</tr>
<tr>
<td>3–5 mm</td>
<td>162</td>
</tr>
<tr>
<td>1–3 mm</td>
<td>13</td>
</tr>
<tr>
<td>0–1 mm</td>
<td>0</td>
</tr>
<tr>
<td><0 mm</td>
<td>0</td>
</tr>
</tbody>
</table>

Exact agreement 72.6%; kappa 0.433; p < 0.05.

Figure 3. Quantitative segmental motion versus visual motion scores in the 1,125, 139, 156, 82, 43 and 35 segments (total 1,580) with visual motion scores of 0, 1, 2, 3, 4 and 5, respectively. \(y = 7.03 - 2.06x; r = 0.668\), SEE 2.04.

Figure 4. Quantitative segmental percent thickening versus visual thickening scores in the 1,125, 96, 101, 43 and 44 segments (total 1,580) with visual thickening scores of 0, 1, 2, 3, 4 and 5, respectively. \(y = 43.01 - 15.96x; r = 0.550\), SEE 15.56.

was good by regression analysis \(y = 7.03 - 2.06x; r = 0.668\), SEE 2.04 mm) and fair by table analysis (kappa 0.433, exact agreement 72.6%). Figure 4 and Table 3 compare visual thickening scores and quantitative percent thickening in the same 1,580 individual myocardial segments (1,295, 195, 45 and 45 segments with visual thickening scores of 0, 1 to 2, 3 and 4, respectively). Again, agreement was fairly good by regression analysis \(y = 43.01 - 15.96x, r = 0.550,\) SEE 15.56%) and fair by table analysis (kappa 0.408, exact agreement 74.7%). Of interest, 90.5% (950 of 1,050) of segments with a quantitative motion score >5 mm and 97.1% (1,007 of 1,037) of segments with a quantitative thickening score >30% were scored as normal by visual analysis.

Clinical patients. The algorithm was executed successfully in all 79 clinical patients studied—success being defined as the generation of endocardial and epicardial contours that matched the contours visually apparent in the images. Figure 3 and Table 2 compare visual motion scores and quantitative absolute motion in the 1,580 individual myocardial segments of the 79 patients (1,125, 295, 82, 43 and 35 segments with visual motion scores of 0, 1 to 2, 3, 4 and 5, respectively). Agreement was good by regression analysis \(y = 7.03 - 2.06x; r = 0.668\), SEE 2.04. For each of the 79 patients studied, summed visual motion score and average quantitative motion. This global approach eliminates the possibility of error due to segmental misalignment between visual and automatic assessment. There were 21, 27, 8 and 23 patients with summed wall motion scores of 0 to 3, 4 to 8, 9 to 13 and >13, respectively. These categories were chosen based on our previous characterization of prognostically important degrees of myocardial hypoperfusion using a similar scoring system (21). The bar

Table 3. Agreement Table Relating Quantitative Thickening and Visual Thickening Scores in the 1,580 Segments Studied

<table>
<thead>
<tr>
<th>Quantitative Thickening</th>
<th>Visual Thickening Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>>30%</td>
<td>1,007</td>
</tr>
<tr>
<td>15–30%</td>
<td>264</td>
</tr>
<tr>
<td>5–15%</td>
<td>24</td>
</tr>
<tr>
<td><5%</td>
<td>0</td>
</tr>
</tbody>
</table>

Exact agreement 74.7%; kappa 0.408; p < 0.05.
graph in Figure 5 demonstrates an inverse linear relation between summed motion score and average absolute motion in millimeters, with statistically significant differences between patients with summed scores of 0 to 3 vs. 4 to 8, 0 to 3 vs. 9 to 13, 0 to 3 vs. >13 and 4 to 8 vs. >13 (p < 0.05 for each of these scores). **p < 0.0001 overall.

Figure 6. Summed wall thickening (WT) score versus average quantitative percent wall thickening in the 79 patients studied. *0 to 3 versus 4 to 8, †0 to 3 versus 9 to 13, ‡0 to 3 versus >13, §4 to 8 versus >13, p < 0.05 for each of these scores. **p < 0.0001 overall.

Discussion

This report describes the application of an automatic algorithm, capable of determining three-dimensional epicardial and endocardial surfaces from gated myocardial perfusion SPECT images, to the assessment of regional wall motion and thickening. Figures 7 and 8 compare different quantitative global measurements of function generated by our automatic algorithm in the 79 patients studied. Figure 7 compares average quantitative motion with global quantitative LVEF, demonstrating extremely good agreement and a linear relation between these variables (y = −0.37 + 0.11x; r = 0.929, SEE 0.70). Figure 8 compares average quantitative thickening with global quantitative LVEF, demonstrating extremely good agreement and a linear relation between them (y = −11.27 + 0.88x; r = 0.959, SEE 4.05%).
regional wall thickening. The algorithm operated successfully in all 79 patients studied. Significant correlation was observed between quantitative and visual assessments of regional wall motion and regional wall thickening. High correlations were also observed between the average quantitative motion in millimeters and the summed visual motion score, as well as between the average quantitative percent thickening and the summed visual thickening score. Finally, LVEF correlated extremely well with both summed wall thickening \((r = 0.959) \) and summed wall motion \((r = 0.929) \) scores. This latter result compares favorably with the correlation of \(r = 0.83 \) between LVEF and wall motion index reported by Ohnishi et al. (23) for radionuclide ventriculography, as well as with the correlation of \(r = 0.82 \) between LVEF and end-systolic fractional shortening reported by Diamond et al. (24) for contrast ventriculography.

Heart translation and rotation. Extensive work with a variety of modalities has indicated the difficulty of correcting for translation and rotation of the heart in the assessment of regional ventricular function (3,5). The three-dimensional approach used in this study includes the translational motion of the heart in the measurement of endocardial motion, but eliminates the inaccuracies derived from the use of a fixed or floating reference system by adopting a three-dimensional extension of the coordinateless centerline method. This absolute measurement of motion will, in some cases, report paradoxical motion of healthy myocardial segments—for example, septal dyskinesia routinely found in patients after cardiac surgery (25); however, thickening measurements can easily help assess the functionality of the dyskinetic segments. Rotation of the heart during systole is not accounted for by our approach. It has been demonstrated, however, that this correction has very little effect on the assessment of the basal two-thirds of the LV (5,26), and its clinical relevance in assessing the distal one-third of the LV is uncertain (5). In routine clinical assessments by nearly all modalities, correction for rotation is not applied.

Limitations of the end-systolic/end-diastolic approach. Our approach uses end-diastolic and end-systolic measurements only. Wall motion abnormalities that may occur earlier (or later) than end-systole are therefore not detected by this technique. Figure 3 shows that our automatic algorithm assigned to the 35 dyskinetic segments (visual score of 5) a mean quantitative motion comparable to that of the 43 akinetic segments (visual score of 4), with a larger variance not directly ascribable to statistical considerations. It has been demonstrated that dyskinesia, as an example, in patients with myocardial infarction frequently occurs before the end of systole (27,28). Modifications of our approach could be made to account for abnormalities not detected at end-systole, but are not part of the present evaluation. This limitation may be exacerbated by our use of only 8 frames/cardiac cycle. We have previously examined the relation between 8- and 16-frame data and have shown little (and uniform) difference with respect to the assessment of LVEF (8). Whether assessing 16 frames as opposed to 8 frames will affect the assessment of regional ventricular function is currently under evaluation at our laboratory.

Myocardial thickness. Our technique is accurate in measuring myocardial wall thickening, although it is incapable of accurately measuring myocardial wall thickness (29). Myocardial thickness cannot theoretically be measured from nuclear medicine images, because such thickness is typically smaller than twice the full-width, half-maximum resolution of the reconstructed image (12). Resolution recovery using knowledge of the tomograph's point spread function has been attempted, but it has proved “computationally challenging,” even for high resolution positron emission tomographic images (30).

Normal limits of regional function. It would be challenging to determine normal limits and criteria of abnormality based on absolute measurements of motion and thickening, as demonstrated by the fact that quantitative measurements corresponding to a visual score of 0 are not clearly separated from those corresponding to visual scores >0 (Fig 3 and 4). This potential limitation is by no means peculiar to nuclear medicine techniques. Echocardiographers have long been aware of it, as summarized by Katze et al. (5): “Normal segmental cavity shrinkage has been reported to vary from 0 percent (i.e., akinesia) to 100 percent and segmental wall thickening to vary from 0 to 150 percent.” Analogously, magnetic resonance imaging (MRI) studies have reported a normal thickening range of 18% to 100% (31) and overall normal thickening of 48 ± 28% (32), the latter being a value consistent with our average normal thickening value of 43 ± 17%, shown in Figure 4 for a visual score of 0. In contrast, a very interesting finding of our study is that a segment with quantitative motion >5 mm and thickening >30% has a 90.5% and 97.1% likelihood of being visually scored as normal, respectively. Our investigation is, at this stage, only concerned with whether one can measure absolute endocardial motion and myocardial thickening accurately and automatically; the issue of normal limits will be the goal of future research.

Reference standards of regional function. Finally, the standard against which our automatic quantitative regional function analysis was tested was expert visual assessment of regional wall motion and wall thickening. It has been stated that in contrast ventriculography “no gold standard exists for verifying the accuracy of wall motion measurements” (3), and the same consideration could apply to nuclear cardiology. It would have been desirable to validate the quantitative gated SPECT data against three-dimensional quantitative gated cardiac magnetic resonance imaging data. Difficulties connected with this approach range from the organizational (MRI and SPECT acquisitions must be performed in close temporal proximity and with the patient in the same loading conditions) to the technical (true three-dimensional acquisition of high quality cine MRI data encompassing the entire LV is difficult using current instrumentation). These difficulties are probably responsible for the existence of only two published studies, to date, comparing regional myocardial function by gated MRI and gated perfusion SPECT—one conducted in semiquantita-
ative fashion on four patients (33) and the other visually comparing two-dimensional regional function in 24 patients (34). Protocols for validation of quantitative SPECT regional wall motion and thickening compared with MRI (as well as for the assessment of the incremental value of SPECT function over perfusion alone) are currently under investigation at our institution.

Conclusions. We developed an automatic algorithm for the quantitative measurement of regional myocardial wall motion and wall thickening from three-dimensional gated 99mTc-sestamibi SPECT images, and we tested it using a “variable thickness” heart phantom. We also compared the quantitative algorithm’s output to visual segmental scores in 79 clinical patients with a wide range of ejection fractions and regional function. The algorithm is accurate and may be the first automatic technique for the quantitative three-dimensional assessment of regional ventricular function in cardiology. In its current implementation on a low cost, off-the-shelf computer platform, the algorithm automatically generated numeric measurements of LV EF, regional wall motion and regional wall thickening in 20 s for each eight-frame gated SPECT study.

We thank Rory Hachamovitch, MD, Hosen Kiat, MD and Mark Hyun for their assistance.

References

